Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract SN 2023ixf was discovered in M101 within a day of the explosion and rapidly classified as a Type II supernova with flash features. Here we present ultraviolet (UV) spectra obtained with the Hubble Space Telescope 14, 19, 24, and 66 days after the explosion. Interaction between the supernova ejecta and circumstellar material (CSM) is seen in the UV throughout our observations in the flux of the first three epochs and asymmetric Mgiiemission on day 66. We compare our observations to CMFGEN supernova models that include CSM interaction ( M⊙yr−1) and find that the power from CSM interaction is decreasing with time, fromLsh≈ 5 × 1042erg s−1toLsh≈ 1 × 1040erg s−1between days 14 and 66. We examine the contribution of individual atomic species to the spectra on days 14 and 19, showing that the majority of the features are dominated by iron, nickel, magnesium, and chromium absorption in the ejecta. The UV spectral energy distribution of SN 2023ixf sits between that of supernovae, which show no definitive signs of CSM interaction, and those with persistent signatures assuming the same progenitor radius and metallicity. Finally, we show that the evolution and asymmetric shape of the Mgiiλλ2796, 2802 emission are not unique to SN 2023ixf. These observations add to the early measurements of dense, confined CSM interaction, tracing the mass-loss history of SN 2023ixf to ∼33 yr prior to the explosion and the density profile to a radius of ∼5.7 × 1015cm. They show the relatively short evolution from a quiescent red supergiant wind to high mass loss.more » « less
-
Abstract We present comprehensive optical observations of SN 2021gmj, a Type II supernova (SN II) discovered within a day of explosion by the Distance Less Than 40 Mpc survey. Follow-up observations show that SN 2021gmj is a low-luminosity SN II (LL SN II), with a peak magnitudeMV= −15.45 and an Feiivelocity of ∼1800 km s−1at 50 days past explosion. Using the expanding photosphere method, we derive a distance of Mpc. From the tail of the light curve we obtain a radioactive nickel mass of = 0.014 ± 0.001M⊙. The presence of circumstellar material (CSM) is suggested by the early-time light curve, early spectra, and high-velocity Hαin absorption. Analytical shock-cooling models of the light curve cannot reproduce the fast rise, supporting the idea that the early-time emission is partially powered by the interaction of the SN ejecta and CSM. The inferred low CSM mass of 0.025M⊙in our hydrodynamic-modeling light-curve analysis is also consistent with our spectroscopy. We observe a broad feature near 4600 Å, which may be high-ionization lines of C, N, or/and Heii. This feature is reproduced by radiation-hydrodynamic simulations of red supergiants with extended atmospheres. Several LL SNe II show similar spectral features, implying that high-density material around the progenitor may be common among them.more » « less
-
Abstract We present five far- and near-ultraviolet spectra of the Type II plateau supernova, SN 2022acko, obtained 5, 6, 7, 19, and 21 days after explosion, all observed with the Hubble Space Telescope/Space Telescope Imaging Spectrograph. The first three epochs are earlier than any Type II plateau supernova has been observed in the far-ultraviolet revealing unprecedented characteristics. These three spectra are dominated by strong lines, primarily from metals, which contrasts with the featureless early optical spectra. The flux decreases over the initial time series as the ejecta cool and line blanketing takes effect. We model this unique data set with the non–local thermodynamic equilibrium radiation transport code CMFGEN , finding a good match to the explosion of a low-mass red supergiant with energy E kin = 6 × 10 50 erg. With these models we identify, for the first time, the ions that dominate the early ultraviolet spectra. We present optical photometry and spectroscopy, showing that SN 2022acko has a peak absolute magnitude of V = − 15.4 mag and plateau length of ∼115 days. The spectra closely resemble those of SN 2005cs and SN 2012A. Using the combined optical and ultraviolet spectra, we report the fraction of flux as a function of bluest wavelength on days 5, 7, and 19. We create a spectral time-series of Type II supernovae in the ultraviolet, demonstrating the rapid decline of flux over the first few weeks of evolution. Future observations of Type II supernovae are required to map out the landscape of exploding red supergiants, with and without circumstellar material, which is best revealed in high-quality ultraviolet spectra.more » « less
-
Abstract We present the optical spectroscopic evolution of SN 2023ixf seen in subnight cadence spectra from 1.18 to 15 days after explosion. We identify high-ionization emission features, signatures of interaction with material surrounding the progenitor star, that fade over the first 7 days, with rapid evolution between spectra observed within the same night. We compare the emission lines present and their relative strength to those of other supernovae with early interaction, finding a close match to SN 2020pni and SN 2017ahn in the first spectrum and SN 2014G at later epochs. To physically interpret our observations, we compare them to CMFGEN models with confined, dense circumstellar material around a red supergiant (RSG) progenitor from the literature. We find that very few models reproduce the blended Niii(λλ4634.0,4640.6)/Ciii(λλ4647.5,4650.0) emission lines observed in the first few spectra and their rapid disappearance thereafter, making this a unique diagnostic. From the best models, we find a mass-loss rate of 10−3–10−2M⊙yr−1, which far exceeds the mass-loss rate for any steady wind, especially for an RSG in the initial mass range of the detected progenitor. These mass-loss rates are, however, similar to rates inferred for other supernovae with early circumstellar interaction. Using the phase when the narrow emission features disappear, we calculate an outer dense radius of circumstellar materialRCSM,out≈ 5 × 1014cm, and a mean circumstellar material density ofρ= 5.6 × 10−14g cm−3. This is consistent with the lower limit on the outer radius of the circumstellar material we calculate from the peak Hαemission flux,RCSM,out≳ 9 × 1013cm.more » « less
An official website of the United States government
